ISI and ICI Suppression for Mobile OFDM System by Using a Hybrid 2-Layer Diversity Receiver

Jing Gao* and Tomohisa Wada†

Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru Nishihara, Okinawa,903-0213,Japan

* E-mail: gaojing722@yahoo.com Tel: +81-98-895-8713 † E-mail: wada@ie.u-ryukyu.ac.jp Tel/Fax: +81-98-895-8713/(8727)

Research purpose:

★This research is focused on a high-performance and low-complexity OFDM receiver by taking account of inter symbol interference (ISI) and inter carrier interference (ICI) suppression.

Background-1: Multi-path Fading Channel

delay profile:

Doppler power spectrum:

Solution ISI, delay-ICI and Doppler-ICI

background-1:

the Channel Transfer Function (CTF) Estimating

A *H* (*f*, *t*) will be effected by ISI, delay-ICI and Doppler-ICI

Background-2: Conventional post-FFT Carrier Diversity (CD) Combining Receiver

signal processing on sub-carrier basis

♦ high-complexity

★the challenge of accurate estimating of CTF

Channel Transfer Function (CTF)

background 3: pre-FFT adaptive array (AA) receiver

Now-complexity:

- 1. decreasing the number of FFT processors
- 2. Only 1-set of AA-weigh is required in one OFDM symbol duration
- **A undesired signals**

depressing:

- 1. ISI-suppression
- 2. more accurate estimating

Hybrid AA/CD two-layer Receiver

1st layer:

- **1. Depressed maxi-excess delay profile.**
- 2. Modified SINR

(by using MMSE criteria)

2nd layer:

- **1. High quality of CTF estimation**
- 2. High performance Carrier

Diversity (CD)

1st layer: pre-FFT Adaptive Array (AA) Using Guard Interval (GI) of OFDM Symbol (based on 2-element)

GI is the copying in front of a symbol from its own end.

1st layer: pre-FFT SMI and MRC Adaptive Array (AA) Schemes

Maxi-ratio Combining (MRC): $\mathbf{W}_{MRC} = E \left[\mathbf{r}_{h}(i) y_{t}^{*}(i) \right]$ (using the cross-correlation vector)

Sample Matrix Inversion (SMI): $\mathbf{R}_{rr} = E \begin{bmatrix} \mathbf{r}_{h} \mathbf{r}_{h}^{H} \end{bmatrix}$ (MMSE criteria) $\mathbf{w}_{SMI} = \mathbf{R}_{rr}^{-1} E \begin{bmatrix} \mathbf{r}_{h} (i) y_{t}^{*} (i) \end{bmatrix}$

^{2nd} layer: post-FFT MRC And EGC Carrier Diversity (CD) Scheme

Maxi-ratio Combining (MRC):
$$w_l(m, p) = \frac{H_l^*(m, p)}{\sum_{l=1}^{L} |H_l(m, p)|^2}$$

Equal Gain Combining (EGC): $w_l(m, p) = \frac{H_l^*(m, p)}{\left|H_l(m, p)\right| \sum_{l=1}^L \left|H_l(m, p)\right|}$

$$w_l(m,p) = \frac{H_l^*(m,p)}{\alpha_l}$$
, where α_l is a real factor

Simulation: 5 Kinds of the Receiver Models

Conventional CD Receiver

"cd-MRC"

Hybrid AA / CD Receiver

hybrid:

"aa-MRC / cd-MRC"

"aa-MRC / cd-EGC"

"aa-SMI / cd-MRC"

"aa-SMI / cd-EGC"

ICI-1: the CTF Estimation in Doppler Channel

ICI-2: post-FFT CD Combining Over Doppler Branches

$$= \sum_{l} \frac{d}{\alpha_{l}} H_{l}(m, p) x_{l}(m, p)$$

$$= d(m, p) I_{0} + I$$

$$= d(m, p) \{ \operatorname{Re}(I_{0}) + j * \operatorname{Im}(I_{0}) \} + I$$

$$= \frac{d(m, p)}{\operatorname{data}} \{ \operatorname{Re}(I_{0}) + j * \operatorname{Im}(I_{0}) \} + I$$

$$= \operatorname{ICI-noise} ICI-noise$$

ICI-3: post-FFT CD Combining Over Doppler Branches

Case-1: all the CD branch signal arrived from only the Forward / or Rear directions. CD over $\{+f_{Dl}T\}$ or $\{-f_{Dl}T\}$ **Case-2:** all the CD branch signal arrived from the Forward-Rear directions.

CD over $\{ \pm f_{Dl}T \}$.

 $0 < \{f_{D1}T, f_{D2}T, f_{D3}T, f_{D4}T\} < 0.1$

 $-0.1 < \{f_{D1}T, f_{D2}T, f_{D3}T, f_{D4}T\} < 0.1$

***** the CD over both CASE-1 (*see left*) and CASE-2 (*see right*) can depress the extra noise by comparing with 1-branch EQ. In CASE-2 is more effective.

the CD over { ±**f**_{D1}**T }** branches (*right* CASE-2) can suppress the ICI-noise significantly (58%).

Mobile application-1:

Configuration of Antennas Mounted on Car

1. High correlation for high Adaptive Array (AA) performance.

2. Front AA: (*F1*+*F2*)

3. Rear AA : (*R1+R2*)

Mobile application-2: the Radiation Character of the Used Four Array Elements (*half power* BW=120°)

Simulated three Channel Models

Path	D/U	AOA	Delay time		
	(<i>dB</i>)	(deg.)	Channel-I	Channel-II	Channel-III
# 1	0	10		0.01*(Tg/8)	
#2	3	90	3.0*(Tg/8)		
#3	5	170	6.0*(Tg/8)		
#4	1.5	190	0.5*(Tg/8)		
#5	2	270	1.0*(Tg/8)		
#6	4	350	3.0*(Tg/8)	5.5*(Tg/8)	9.0*(Tg/8)

Adaptive Array-1: Beam-pattern of AA Schemes (SNR=35dB)

Adaptive Array-2: Normalized CTF Varying With Subcarrier Index (with SNR=35dB, no Doppler shift)

Adaptive Array-3: Normalized CTF Varying With Subcarrier Index (in beyond-GI delayed CHANNEL-III)

Simulation System Parameter

(ISDB-T Digital TV Standard of Japan and Brazil)

Carrier frequency	f_{c}	563.143 MHz (UHF-28ch)
Subcarrier spacing	$f_{ heta}$	0.992 kHz
Number of carriers	N	8192
Number of effective carriers	N_{e}	5617
Effective symbol duration	T _e	1008 <i>u</i> s
Guard interval duration		$(1/8)T_{e}$
Digital modulation		64QAM

Simulation result-1:

BER Performance in Channel-1 (*short-delay*)

Simulation result-2:

BER Performance in Channel-2 (*short delay*)

Simulation result-3:

BER Performance in Channel-3 (long delay)

conclusion

- **1**. Proposed hybrid AA/CD two layers receiver is analyzed.
- **2**. The Hybrid receiver is a low-complexity method, it can halve CD branches in comparison with the conventional CD receiver.
- 3. The hybrid receiver is a high-performance approach. Especially, when the received signal suffers from large delayed or beyond GI delayed path conditions, by using the SMI AA in 1st layer, the proposed hybrid AA/CD 2-layer receiver show good performance while that of the conventional post-FFT CD receiver is degraded significantly.