A Context Aware Interruption Management System for Mobile Devices

Sina Zulkernain Praveen Madiraju Sheikh Iqbal Ahamed

{sina.zulkernain, praveen.madiraju, sheikh.ahamed} @ marquette.edu July 02, 2010

Dept. of Mathematics, Statistics & Computer Science

Marquette University Milwaukee, WI, USA

Outline

- Motivation
- Problem Description
- Contribution
- Characteristics
- Related Work
- System Architecture
- Case Study Application
- Evaluation
- Future Work

Motivation (Some Statistical Data)

- Phone Subscriptions
 Worldwide ~ 4.6 billion by
 the end of 2009
- There are 225,000 active iPhone Apps with over 5 billion downloads
- Undesirable interruptions constitute 28 percent of the knowledge worker's day. Which translates to a loss of 700 billion dollars per year in US alone

Motivation(cont'd)

- 18-21 year olds are losing advantage over 35-39 year olds in cognitive demanding situations solely because of electronic communication technology
- When interrupted, users take up to 30% longer to complete a task associated with up to twice the number of errors
- Yesterday's Speaker, Prof.Wolfson's talk interruption

Problem Description

■ The massive growth of mobile devices comes with a cost: INTERRUPTION without any consideration of TIME and PLACE

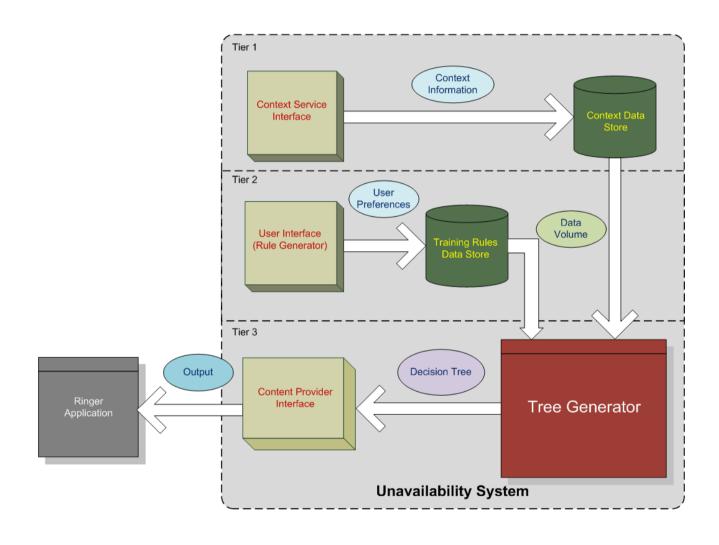
Hence, we need a mobile interruption management system that will decide in realtime if the user should be interrupted

Contributions

- Designed and developed a mobile intelligent interruption management architecture for mobile devices
- Implemented a case study application using the developed system architecture
- Evaluated the prototype application
- Gathered users' feedback regarding the usability of the case study application

Desirable Characteristics

- Mobility (C1)
- Customizable (C2)
- Adaptable (C3)
- Context Aware (C4)
- Automated (C5)
- Unavailability Aware (C6)

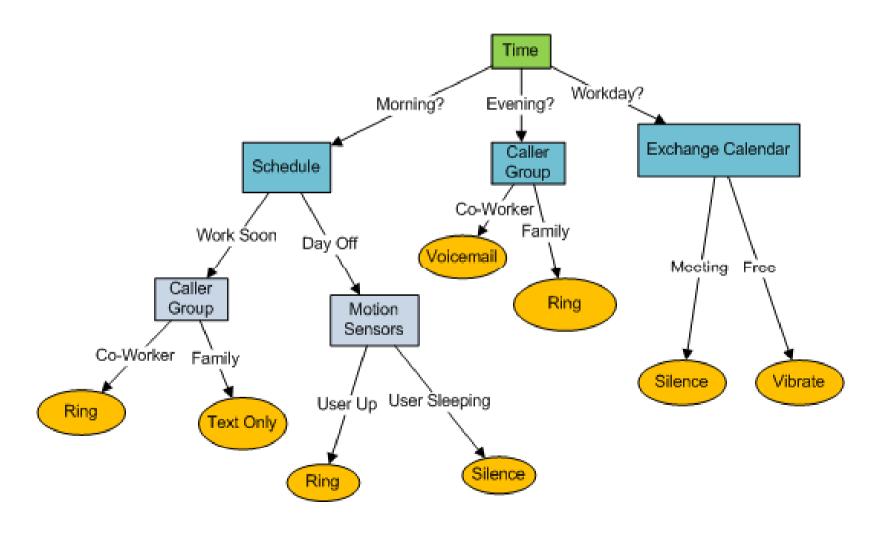

Related Work

- Dekel et al. [11] built an application that minimizes mobile phone interruptions by changing profile settings intelligently
- Savioja [32] addresses different kinds of alarms for different types of interruptions in control room environments
- Khalil & Connelli [25] use calendar information of the phone to minimize disruptions
- Godbole & Smari [15] proposed a methodology and design process for building interruption aware system
- Bailey (2008) uses non specific task cues such as desktop activity, pupil size, etc.

Related Work (Comparison of various systems)

Characteristics	Cl	C2	C3	C4	C5	C6
Research						
Works						
Toninelli et al.	X	X	_	X	x	_
[36]						
Godbole &	_	_	_	X	X	_
Smari [15]						
Picard et al. [31]	-	-	X	_	X	-
Bailey et al. [5]	-	-	X	X	X	-
Ho & Intille	_	_	X	X	X	X
[20]						
Mark et al. [27]	-	-	_	X	X	-
Dekel et al. [11]	X	X	-	X	X	-
Guzman et al.	X	_	_	X	X	_
[17]						
Khalil &	X	X	_	_	X	X
Connelli [25]						
Marti &	X	X	_	_	-	X
Schmandt [28]						
Our System	X	X	X	X	X	X

System Architecture



System Architecture (contd...)

- Tier 1 (Context Information). This tier aggregates information from the internal sources and generates a Context object to be stored in the Context Data Store. This object is passed to the Tree Generator (Decision Tree tier) for processing
- Tier 2 (User Preferences). User specific choices and rules are stored in this tier
- Tier 3 (Decision Tree). The Tree Generator receives inputs of Context Data Point from Tier 1 and user preferences from Tier 2 and then generates a decision tree structure.

System Architecture (contd...)

An example decision tree:

Case Study Application (Scenario)

- An organization wants to send all its sales employees performance metrics each hour
- Each sales person has an area specified as their work area and the company wants to send the metrics only during work hours.
- Whenever the sales person is in some scheduled event the company does not want to send the metrics

Case Study Application (Services Used)

Three contexts used: Location, User's Schedule, and Day of week along with Time of day.

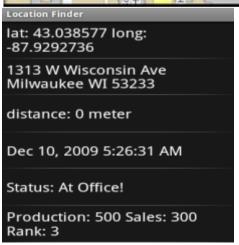
Used Google Calendar as the scheduler

GPS service

System clock as the third service

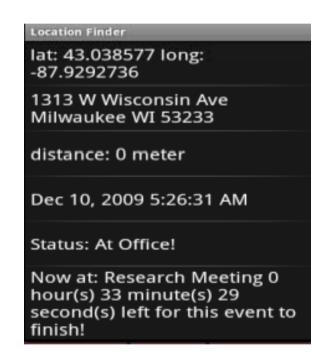
Case Study Implementation (Platform)

<u>Development Platform</u>: **Android** <u>Cell Phone Used</u>: HTC G1 from TMobile

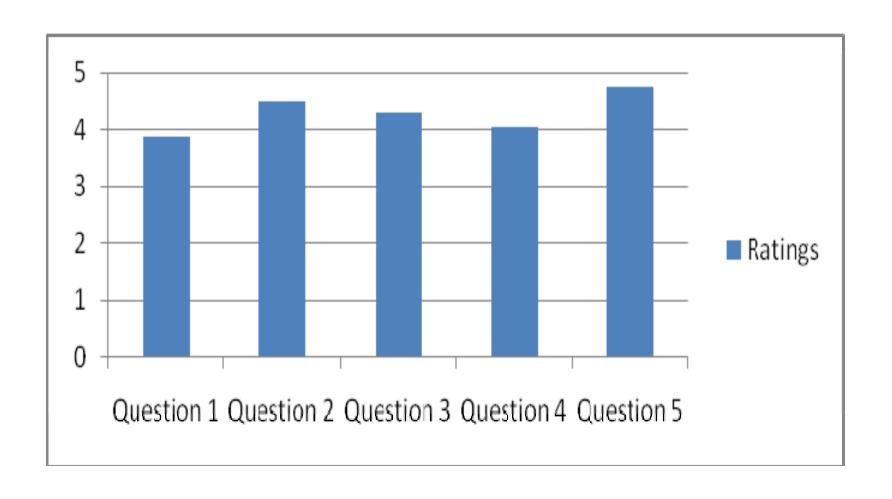

Reasons to choose Android:

- Linux to the core and entirely open sourced
- Can run background processes using minimal CPU and battery resources
- Only platform that allows full control of the ringer application

Case Study Application (Screenshots)



Case Study Application (Screenshots Contd...)


Evaluation

- Installed on a cell phone with dimensions only 117.7 mm × 55.7 mm ×17.1 mm
- Data volume received is calculated below 50 kilobytes at any given environmental change
- Has built in GPS for instance, one of the only data sources that can be assumed to exist for all deployments and use cases
- Decision tree traversal is a linear process. So the CPU power usage is very low along with the battery concerns
- The user interface component is a constant time computation; again less CPU and memory usage
- Utilizes the varying modes of unavailability; vision, hearing and touch and responds by ringing, vibrating or going silent

Usability Study

- Survey of 30 people (17 ugrads, 8 grads, 2 faculty, 2 industry, and 1 other)
- Q1: Overall, how would you rate the services? (1 = Very Poor, 5 = Excellent)
- Q2: What is the effectiveness of this application? (1 = Not Effective at all, 5 = Very Useful)
- Q3: How easy is it to give the input? (1 = Very Hard, 5 = Very Easy)
- Q4: Will you pay to use this application? (1 = Definitely Not, 5 = Definitely Yes)
- Q5: Would you recommend this application to a friend? (1 = Surely Not, 5 = Surely Yes)

Usability Study (cont'd)

Conclusions and Future Work

- The caller can be notified of the receiver's current state if s/he is not picking up
- Receiver can inform the caller when to try again
- Plan to formalize the model for unavailability which takes into account context-aware services such as location based services
- Will explore possible applications of our system in different application domains from cell phones to instant messaging, email clients, and social networking
- Currently working toward developing a formal model for Cost of Interruption (COI)

Thank You

Questions?

