Developing and Benchmarking Native Linux
Applications on Android

Leonid Batyuk Aubrey-Derrick Schmidt
Hans-Gunther Schmidt Ahmet Camtepe Sahin Albayrak

DAI-Labor, Technische Universitat Berlin

The Second International ICST Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and
Applications, 2009

||. DAI-Labor

TU Berlin

Outline

@ Android Overview
@ What is Android?
@ How does it work?
@ The Dalvik VM

@ Native code for Android
@ Scope
@ Important facts
@ Techniques

e Benchmarking
@ Performance issues
@ Benchmarking set-up
@ Results

@ Conclusions ||. DAIl-Labor

TU Berlin

Android Overview

Outline

a Android Overview
@ What is Android?
@ How does it work?
@ The Dalvik VM

|. DAIl-Labor

TU Berlin

Overview

What is Android?

@ Android is an open-source OS for mobile
internet devices

@ Android is being driven by the Open Handset
Alliance, including Google, HTC, T-Mobile,
Samsung, Sony-Ericsson, Motorola and
others

@ Android is tageted at, but not limited to

smartphones. It is supposed for all kinds of
mobile devices, including netbooks

|||I DAI-Labor

TU Berlin

Android Overview
°0

How does it work?

Android comprises of:
Application) @ Linux kernel
@ Modified BSD libc (bionic)

Application Framework
*_ @ Stripped-down unixoid userland
Libraries Dalvik VM PP

@ Custom object oriented IPC
Linux kernel (OpenBinder)

—
@ Custom Java VM (Dalvik)

||. DAI-Labor

TU Berlin

Android Overview ode for Android
0000

Development of Android applications

\ @ Developers are intended to create
applications in Java
@ An SDK is provided by Google

e Emulator
o Eclipse plugin
e Debugging utilities
GUI layout @ An application is packaged for distribution in
an APK file, which contains:

e Bytecode

e Manifest file describing the capabilities etc.
Resources . N

] e Various application resources

L APK) @ Distribution is possible, but not restricted to,
the Android Market. |||I DAI-Labor

TU Berlin

GUI styles

m

roid Overview
sfeY Yo}

The Dalvik VM

e for Android

@ Custom Java VM developed by Google
@ Uses its own bytecode, not Java bytecode

@ Each application runs in its own VM instance
for security reasons
@ Register-based, optimized for small footprint

@ Lacks Just-In-Time compilation and other
common optimizations, therefore not
performant

|||I DAI-Labor

TU Berlin

Android Overview
oce

Why not speed-up using native code?

Using native code is still not supported, but is expected to
become part of the SDK by the end of the year.

||. DAI-Labor

TU Berlin

Android Overview
oce

Why not speed-up using native code?

Using native code is still not supported, but is expected to
become part of the SDK by the end of the year.

| A\

Google says:

[...] C/C++ code [...] easily runs 10-100x faster than doing the
same thing in a Java loop.

\

|||I DAI-Labor

TU Berlin

Native code for Android

Outline

@ Native code for Android
@ Scope
@ Important facts
@ Techniques

[l PAHLabor

Native code for Android
©0000

Scope

What is a good reason to use native code?
@ Speed up heavy computational tasks
@ Time-critical applications
@ Running a daemon outside of the application lifecycle

|||I DAI-Labor

TU Berlin

Native code for Android
0000

@ Speed up heavy computational tasks
@ Time-critical applications

@ Running a daemon outside of the application lifecycle

What is a good reason to use native code?

v

Out of scope:

@ 100% native applications are impossible since the Ul runs

in Dalvik

@ Porting big and powerful software like Snort or MySQL is

unfeasible due to linking issues

’

DAIl-Labor

TU Berlin

Important facts

r

Manifest file
Dalvik bytecode

Native binary
Native library
GUI styles
GUI layout

Localization

Resources

T

e

APK

5

@ Toolchain

o Code Sourcery G++ (G++-like toolchain)
e Scratchbox (ARM emulation with a toolchain)

@ Different page alignment

e Dynamic linking becomes difficult
e Static linking preferred for standalone
executables

@ Packaging

o If you want a Ul, make your native code a
part of an APK

@ Size limit
@ Any raw resource which is packaged inside
an APK may not exceed 1Mb |||I DAI-Labor

TU Berlin

Native code for Android
@00

Techniques

Java Native Interface I
Traditional unixoid IPC via FIFOs I

|||I DAI-Labor

TU Berlin

Native code for Android
(o] Jo}

JNI

Java cl
ava class @ JNI - Java Native Interface

O | e Widely accepted in the Java ecosystem
® (Eclipse, SWT)

(native method sub N Widely used in the Android OS
implementation

@ Currently not supported in the SDK, but
)/ planned

@ Runs in same thread, no process is being
spawned

native function

|. DAI-Labor

TU Berlin

Native code for Android
ooe

Pipes

Java class

@ FIFO - firstin, first out
O | e Widely used for simple IPC on unixoid
systems

@ Java uses a named pipe to communicate to a
standalone native executable
FIFO - FIFo @ Java /O is extremely expensive on Android
‘ and thus a bottleneck
@ Runs in its own thread, can be made a
daemon
@ This allows us to avoid the standard
application lifecycle

native function

|. DAI-Labor

TU Berlin

Benchmarking

Outline

e Benchmarking
@ Performance issues
@ Benchmarking set-up
@ Results

@ Conclusions |. DAI-Labor

TU Berlin

Benchmarking
®00

Performance of the Sun JVM

Linux x86 PC (for comparison)

1.5 —
@
E
B 1 |
(%]
Q.
©
[
g
i:0.5 = -

——Sun JRE 1.6
0r | | ——gee-03
0 2,000 4,000

Array size il DAH-Labor

TU Berlin

Benchmarking
fo] Yo}

Performance issues of the Dalvik VM

Android emulator

— Dalvik VM || ‘

—— Android C
goo - .
©
[0}
(72}
Q
©
50 [B
£
|_

0 |
| | |
0 2,000 4,000
Array size

[l PAHLabor

Benchmarking
ooe

Performance issues of the Dalvik VM

Dalvik performance problems

@ No Just-in-Time compilation
@ Optimized for small footprint, not raw performance
@ Java I/O (java. io) and built-in functions relatively slow

|||I DAI-Labor

TU Berlin

Microbenchmarking approach

@ Microbenchmarking focuses on small and
uncomplicated benchmarks

@ Measuring the performance of the basic
computing operations

@ Not intended to rate the overall performance
of the system

@ Not measuring the responsiveness of the Ul
or the 1/0 speed

|||I DAI-Labor

TU Berlin

Benchmarking
oe

Benchmark set-up

Heapsort in Java

Heapsort in a daemon which listenes to a FIFO

Heapsort in a JNI library

Built-in Java method for sorting arrays

Built-in Java method for sorting objects (PriorityQueue)
Quicksort in Java

|||I DAI-Labor

TU Berlin

Benchmark set-up

Heapsort in Java

Heapsort in a daemon which listenes to a FIFO

Heapsort in a JNI library

Built-in Java method for sorting arrays

Built-in Java method for sorting objects (PriorityQueue)
Quicksort in Java

Setup on Android and on a Linux PC

@ Android: Code Sourcery gcc —03 vs. Dalvik VM
@ Linux: GNU Compiler Collection gcc -03 vs. Sun JDK 1.6

|||I DAI-Labor

TU Berlin

Benchmarking
0

Results on Android

Sorting Integers on Android

F T T]
10% 1 E
) 5 §
E i i
°
2 |- -
e 102 .
Q - :
& r B
S r B
P L
£ 10" b —>— pipe (using native Linux)
= F —@— plain Java heapsort (VM)
= —4— PriorityQueue (VM)
o [—A— Java built-in (VM)
10 ; | | | | —m— JNI (using native Linux)

o

1,000 2,000 3,000 4,000 5,000
Array size I. DAI-Labor

TU Berlin

Benchmarking
oe

Results on a Linux system (for comparison)

Sorting Integers on a Linux PC (for comparison)

T T T | T T =
101 . WW |
@ I I - 1
] 100 | .
@ = -
Q F E
ks g 1
m [~ .
o L
£ 1 —— pipe (using native Linux)
= 10 F —@— heapsort (VM)
C —4— PriorityQueue (VM)
| —a— Java built-in (VM)
JNI (usi tive Li
10-2 b | | | | —— (using native Linux)

0 1,000 2,000 3,000 4,000 5,000
Array size I. DAI-Labor

TU Berlin

Benchmarking
®00

Conclusions for Android

@ JNI is the fastest approach

|. DAI-Labor

TU Berlin

Benchmarking
®00

Conclusions for Android

@ JNI is the fastest approach
@ JNI is up to 10 times faster than plain Java

||. DAI-Labor

TU Berlin

Benchmarking
®00

Conclusions for Android

@ JNI is the fastest approach
@ JNI is up to 10 times faster than plain Java

@ Pipes are unfeasible for data-intensive tasks because of
the expensive 1/0

||. DAI-Labor

TU Berlin

Benchmarking
®00

Conclusions for Android

@ JNI is the fastest approach

@ JNI is up to 10 times faster than plain Java

@ Pipes are unfeasible for data-intensive tasks because of
the expensive 1/0

@ Google should optimize Dalvik:

@ introduce JIT
e implement computationally complex classpath methods
with JNI

|||I DAI-Labor

TU Berlin

Benchmarking
fo] Yo}

Future work

@ Port a more common benchmark to Android (maybe
LINPACK)

@ Benchmark various handsets as they emerge during 2009

@ Compare performance of Android to other mobile OSes on
the same hardware

|||I DAI-Labor

TU Berlin

Benchmarking
ocoe

- T -

Thank you!

|. DAI-Labor

TU Berlin

	Android Overview
	What is Android?
	How does it work?
	The Dalvik VM

	Native code for Android
	Scope
	Important facts
	Techniques

	Benchmarking
	Performance issues
	Benchmarking set-up
	Results
	Conclusions

