
Android Overview Native code for Android Benchmarking

Developing and Benchmarking Native Linux
Applications on Android

Leonid Batyuk Aubrey-Derrick Schmidt
Hans-Gunther Schmidt Ahmet Camtepe Sahin Albayrak

DAI-Labor, Technische Universität Berlin

The Second International ICST Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and

Applications, 2009



Android Overview Native code for Android Benchmarking

Outline

1 Android Overview
What is Android?
How does it work?
The Dalvik VM

2 Native code for Android
Scope
Important facts
Techniques

3 Benchmarking
Performance issues
Benchmarking set-up
Results
Conclusions



Android Overview Native code for Android Benchmarking

Outline

1 Android Overview
What is Android?
How does it work?
The Dalvik VM

2 Native code for Android
Scope
Important facts
Techniques

3 Benchmarking
Performance issues
Benchmarking set-up
Results
Conclusions



Android Overview Native code for Android Benchmarking

What is Android?

What is Android?

Android is an open-source OS for mobile
internet devices
Android is being driven by the Open Handset
Alliance, including Google, HTC, T-Mobile,
Samsung, Sony-Ericsson, Motorola and
others
Android is tageted at, but not limited to
smartphones. It is supposed for all kinds of
mobile devices, including netbooks



Android Overview Native code for Android Benchmarking

How does it work?

How does it work?

Application

Application Framework

Linux kernel

Libraries Dalvik VM

Android comprises of:
Linux kernel
Modified BSD libc (bionic)
Stripped-down unixoid userland
Custom object oriented IPC
(OpenBinder)
Custom Java VM (Dalvik)



Android Overview Native code for Android Benchmarking

How does it work?

Development of Android applications

Manifest file

Localization

GUI layout

GUI styles

Dalvik bytecode

Resources

APK

Developers are intended to create
applications in Java
An SDK is provided by Google

Emulator
Eclipse plugin
Debugging utilities

An application is packaged for distribution in
an APK file, which contains:

Bytecode
Manifest file describing the capabilities etc.
Various application resources

Distribution is possible, but not restricted to,
the Android Market.



Android Overview Native code for Android Benchmarking

The Dalvik VM

The Dalvik VM

Custom Java VM developed by Google
Uses its own bytecode, not Java bytecode
Each application runs in its own VM instance
for security reasons
Register-based, optimized for small footprint
Lacks Just-In-Time compilation and other
common optimizations, therefore not
performant



Android Overview Native code for Android Benchmarking

The Dalvik VM

Why not speed-up using native code?
Using native code is still not supported, but is expected to
become part of the SDK by the end of the year.

Google says:

[...] C/C++ code [...] easily runs 10-100x faster than doing the
same thing in a Java loop.



Android Overview Native code for Android Benchmarking

The Dalvik VM

Why not speed-up using native code?
Using native code is still not supported, but is expected to
become part of the SDK by the end of the year.

Google says:

[...] C/C++ code [...] easily runs 10-100x faster than doing the
same thing in a Java loop.



Android Overview Native code for Android Benchmarking

Outline

1 Android Overview
What is Android?
How does it work?
The Dalvik VM

2 Native code for Android
Scope
Important facts
Techniques

3 Benchmarking
Performance issues
Benchmarking set-up
Results
Conclusions



Android Overview Native code for Android Benchmarking

Scope

Scope

What is a good reason to use native code?

Speed up heavy computational tasks
Time-critical applications
Running a daemon outside of the application lifecycle

Out of scope:
100% native applications are impossible since the UI runs
in Dalvik
Porting big and powerful software like Snort or MySQL is
unfeasible due to linking issues



Android Overview Native code for Android Benchmarking

Scope

Scope

What is a good reason to use native code?

Speed up heavy computational tasks
Time-critical applications
Running a daemon outside of the application lifecycle

Out of scope:
100% native applications are impossible since the UI runs
in Dalvik
Porting big and powerful software like Snort or MySQL is
unfeasible due to linking issues



Android Overview Native code for Android Benchmarking

Important facts

Important facts

Manifest file

Localization

GUI layout

GUI styles

Native library

Native binary

Dalvik bytecode

Resources

APK

Toolchain
Code Sourcery G++ (G++-like toolchain)
Scratchbox (ARM emulation with a toolchain)

Different page alignment
Dynamic linking becomes difficult
Static linking preferred for standalone
executables

Packaging
If you want a UI, make your native code a
part of an APK

Size limit
Any raw resource which is packaged inside
an APK may not exceed 1Mb



Android Overview Native code for Android Benchmarking

Techniques

Techniques

JNI
Java Native Interface

Pipes
Traditional unixoid IPC via FIFOs



Android Overview Native code for Android Benchmarking

Techniques

JNI

method

method

native method stub

native function

Java

Native

Java class

C library

JNI - Java Native Interface
Widely accepted in the Java ecosystem
(Eclipse, SWT)
Widely used in the Android OS
implementation
Currently not supported in the SDK, but
planned
Runs in same thread, no process is being
spawned



Android Overview Native code for Android Benchmarking

Techniques

Pipes

method

native method stub

Java I/O

native function

Java

Native

Java class

C library

Native I/O

FIFOFIFO

FIFO - first in, first out
Widely used for simple IPC on unixoid
systems
Java uses a named pipe to communicate to a
standalone native executable
Java I/O is extremely expensive on Android
and thus a bottleneck
Runs in its own thread, can be made a
daemon
This allows us to avoid the standard
application lifecycle



Android Overview Native code for Android Benchmarking

Outline

1 Android Overview
What is Android?
How does it work?
The Dalvik VM

2 Native code for Android
Scope
Important facts
Techniques

3 Benchmarking
Performance issues
Benchmarking set-up
Results
Conclusions



Android Overview Native code for Android Benchmarking

Performance issues

Performance of the Sun JVM

0 2,000 4,000

0

0.5

1

1.5

Array size

Ti
m

e
el

ap
se

d
[m

s]

Linux x86 PC (for comparison)

Sun JRE 1.6
gcc -O3



Android Overview Native code for Android Benchmarking

Performance issues

Performance issues of the Dalvik VM

0 2,000 4,000

0

50

100

Array size

Ti
m

e
el

ap
se

d
[m

s]

Android emulator

Dalvik VM
Android C



Android Overview Native code for Android Benchmarking

Performance issues

Performance issues of the Dalvik VM

Dalvik performance problems
No Just-in-Time compilation
Optimized for small footprint, not raw performance
Java I/O (java.io) and built-in functions relatively slow



Android Overview Native code for Android Benchmarking

Benchmarking set-up

Microbenchmarking approach

Microbenchmarking focuses on small and
uncomplicated benchmarks
Measuring the performance of the basic
computing operations
Not intended to rate the overall performance
of the system
Not measuring the responsiveness of the UI
or the I/O speed



Android Overview Native code for Android Benchmarking

Benchmarking set-up

Benchmark set-up

Heapsort in Java
Heapsort in a daemon which listenes to a FIFO
Heapsort in a JNI library
Built-in Java method for sorting arrays
Built-in Java method for sorting objects (PriorityQueue)
Quicksort in Java

Setup on Android and on a Linux PC
Android: Code Sourcery gcc -O3 vs. Dalvik VM
Linux: GNU Compiler Collection gcc -O3 vs. Sun JDK 1.6



Android Overview Native code for Android Benchmarking

Benchmarking set-up

Benchmark set-up

Heapsort in Java
Heapsort in a daemon which listenes to a FIFO
Heapsort in a JNI library
Built-in Java method for sorting arrays
Built-in Java method for sorting objects (PriorityQueue)
Quicksort in Java

Setup on Android and on a Linux PC
Android: Code Sourcery gcc -O3 vs. Dalvik VM
Linux: GNU Compiler Collection gcc -O3 vs. Sun JDK 1.6



Android Overview Native code for Android Benchmarking

Results

Results on Android

0 1,000 2,000 3,000 4,000 5,000

100

101

102

103

Array size

Ti
m

e
el

ap
se

d
[m

s]

Sorting Integers on Android

pipe (using native Linux)

plain Java heapsort (VM)

PriorityQueue (VM)

Java built-in (VM)

JNI (using native Linux)



Android Overview Native code for Android Benchmarking

Results

Results on a Linux system (for comparison)

0 1,000 2,000 3,000 4,000 5,000
10−2

10−1

100

101

Array size

Ti
m

e
el

ap
se

d
[m

s]

Sorting Integers on a Linux PC (for comparison)

pipe (using native Linux)

heapsort (VM)

PriorityQueue (VM)

Java built-in (VM)

JNI (using native Linux)



Android Overview Native code for Android Benchmarking

Conclusions

Conclusions for Android

JNI is the fastest approach
JNI is up to 10 times faster than plain Java
Pipes are unfeasible for data-intensive tasks because of
the expensive I/O
Google should optimize Dalvik:

introduce JIT
implement computationally complex classpath methods
with JNI



Android Overview Native code for Android Benchmarking

Conclusions

Conclusions for Android

JNI is the fastest approach
JNI is up to 10 times faster than plain Java
Pipes are unfeasible for data-intensive tasks because of
the expensive I/O
Google should optimize Dalvik:

introduce JIT
implement computationally complex classpath methods
with JNI



Android Overview Native code for Android Benchmarking

Conclusions

Conclusions for Android

JNI is the fastest approach
JNI is up to 10 times faster than plain Java
Pipes are unfeasible for data-intensive tasks because of
the expensive I/O
Google should optimize Dalvik:

introduce JIT
implement computationally complex classpath methods
with JNI



Android Overview Native code for Android Benchmarking

Conclusions

Conclusions for Android

JNI is the fastest approach
JNI is up to 10 times faster than plain Java
Pipes are unfeasible for data-intensive tasks because of
the expensive I/O
Google should optimize Dalvik:

introduce JIT
implement computationally complex classpath methods
with JNI



Android Overview Native code for Android Benchmarking

Conclusions

Future work

Port a more common benchmark to Android (maybe
LINPACK)
Benchmark various handsets as they emerge during 2009
Compare performance of Android to other mobile OSes on
the same hardware



Android Overview Native code for Android Benchmarking

Conclusions

Thank you!


	Android Overview
	What is Android?
	How does it work?
	The Dalvik VM

	Native code for Android
	Scope
	Important facts
	Techniques

	Benchmarking
	Performance issues
	Benchmarking set-up
	Results
	Conclusions


