Gyudong Shim, Kyu-Ho Park

presented by Gyudong Shim
odshim@core.kaist.ac.kr
2009.4.28

Contents
Introduction
» U-interactive system for Ubiquitous Fashionable
Computers

Motivation of scalability issues

Scalable Interactive Middleware Components
» Tuple indexing and query methods

» Fan search

Target selection with angle and distance by space filling
curves

Performance Evaluation
Conclusions

UFC

itous Fashionable Computer)
T

» UFC(Ubiqu
O T At R

Display(touch screen)

1Throw

IThrow

» Intuitive gesture based interface for ubiquitous services
Control TV, DVD players
Uploading UCC after editing pictures

PowerPoint presenter

= P T

(a) pointing (b) scanning (¢) throwing

f Y
dke

(d) receiving (e) Ready to receive (f) volume control

/Throw command sets

» U-interactive middleware

» Location based interaction with surrounding services by
IThrow interface

» Handles user commands, data transfers, location services

7~

Z

-

\
J

N\

<
<

7

<
N\
o J

o<l < oo A <b o =
leglgg| g 28] T EEIE
g% 2| & |2F|le---LocationQuery _____ == ENE
g | S|¢ g) S o
S 5 ° S Q
3 ¢ |& |l-MapFeedback __________ X S| &

imeractive obiact sdior

Administra\tei;m _
Virtual Map Editor

» Print a File Scenarios
Virtual Map Repository

Map images

Interactive objects
dlrectory

©00

1. update location

Printer M ¢-------- > UbiSpace
h" 2. reglster subscrlptlon

UFC!

2. 1) point the target R
2) select the target by fan search

3. throwing the picture

-
-
-
-
——

publish to printer

E
1

UbiSpace
UbiSpace

» Tuple space based coordination middleware
» Java object and File sharing

» String key based publish/subscribe system

Actual
S Formal
! UbiSpace
1 P .. |
publish <“ithrow_data_2", cam.jpg> - <“ithrow_data_4", *>
e —— S—_ 4
<“ithrow_data_2", *> | | <‘ithrow_data_3", * > —

_ subscribe

Motivation of SIMC

Scalability of U-interactive for massive target
environments

» Museums, public stations with crowd users

» More than thousands users and service objects

» Frequent location updates and queries

» A lot of control messages and files over active spaces

Efficient data indexing and query processing for
Our System
» Tuple indexing in UbiSpace
» Fan search by space filling curves with query
optimization

1. Tuple Indexing Scheme

Tuple matching pattern

» Read the newest version of “KEY” 1n
the tuple space - LIFO

» Subscribe “KEY” from the tuple

space

Problem of T-Space[1]
» Support FIFO ordering e for
» Index tuples by template tuple through emvaet"cyh}:g'for

the newest
version

manual configuration
» Exhaustive tuple scanning operation
Tuple indexing for interactive spaces

» Indexing by <name, time(reverse
order)>

i

Tuple indexing by FIFO

[1] Hitting the distributed computing sweet spot with TSpaces. In: Computing Networks, pp. 457—
472 (2001)

I Tuple [lndoxine schenic

Tuples are indexed by <tuple name, tuple 1d> composite keys

for tuple matching

» Tuple 1d is the serial number of tuple creation

» The same name of tuples are indexed by tuple 1d by descending
order

» No repeated scanning overhead in tuple matching

Tuple Name Tuple ID | Tuple
Icommand 12

Icommand 1

Icommand 10

Ticket 4

Ticket 2

Zoo 1

Tuple container<name, id>

llll rent Pointer

Q/j 0T, i 5] e
/o /
o Tl el e e T e e el e

B*-Tree with composite key

2. Fan Search

Fan search
» Pointing direction 0,
» Allowed range 0,
> Select a target which 1s the closest to the 0, within
[0p—0,..0, +0,] and distance within r

4 Pointing direction

1 O¢ in the fan(r, 8,y)
Is selected

Op

2. Fan Search with Space Filling Curvey

Efficient object indexing for location based
queries

» Exploit space filling curves for frequent location
update and region queries

» Query Optimization
Query region decomposition for space filling curves
Caching path stack for repeated tree-traversals

Query 1nterval skip by leaf node data

*e o o o

* o o o

o o

1st iteration 2nd iteration 4th iteration
C-Curve

Vv

* Figures from JASS 2005 Saint Petersburg

Related Work : Round Eyel[2]

Nearest Surrounder Search
» A set of nearest surroundings at given position
» Application: Robot soccer
» Query indexing for efficient tracking
» R-Tree based Query, Object indexing

Sl query

Round-Eye | [_ subseripiion
Server 74 _: query result > i
/ N update stationary query ¢lient
%,
object ebject
location loation
— H% update ==
I o = |
e —
e on & | resi
objeel i | query
&l’wdﬂw subscriptipn Base
—] station
1 N
asyoe - LB ——
moving _"”“l"‘_ t - | |
objeat moving objee LELERS P
! (query client) mobile object —
. (query client) moving
Service areq object

[2] Round-Eye: A system for tracking nearest surrounders in moving object environments. Elsevier .
Information Systems 80(12), 2063—2076 (2007)

2.1 Query Decompositions

Motivation

» Reduce false hits by single MBR for spatial
queries such as line, curves, and fan

» Selection of Space filling curves
Z-Curve(DRU) performance degradation by

decomposition query region
duplicated outside query region checks

Qui

C-Curve with multi interval query reg

Road planning: lookup any

buildings which intersect the
new rnad

» Query region approximation by one M|
inefficient by FALSE HIT

T~

Query
region

» One MBR query vs sum of MBRs queries
BR 1s

Vv

>

Query
region

2.1 Integral Range Queries

MBRs Calculation
» For each x; intervals from x . to x_.. of query
region
calculate y .., y..., value for [X...X;,;) — R,
Range Query for multiple intervals | -5 | |
» BPTree.rangeQuery([R,,..R,]) HE Lt T
N Y ol
Pruning candidate results —

» Check the object 1s inside the query region

» If an entry of leaf node exceeds the current
range,
» Skip M

.

3Rs which are behind the entry

-~ MBRs are skipped by leaf

node data

4

\

S

l

A4

(0 3) <00~ r

14

12

10

» UbiSpace Tuple indexing effect

» UbiSpace exploit the indexing effect

» Bounded matching time to the number of tuples

) L
/ a
t
/l/ .
n
=0=bispace ¢
=i—T-Space y
m
* ¢ S
0 2000 4000 6000 8000 10000 12000

Number of tuples

Average latency of read operations

4
3.5

3 4

—l— |
2 .
=0=Uubispace

1.5 == T-Space

1
0.5

0 T T T T T 1

0 2000 4000 6000 8000 10000 12000

Number of Tuples

Average latency of write operation

Performance Evaluation

v c 9 A Py A

Fan Search Latency

Effect of Various space filling curves
» In low density, Z-Curve outperforms

» In high density, C-Curve outperforms due to less false hit on tree
traverse

» Path stack cache and leaf node jumps improves up to 5% latency

—u— C-Curve -
{ | —e— C-Curve with multi-interval re
104— 4 Z-Curve A~
] A
Latency; v /
(ms) 1. =
o
] ?.;3/
0.1 l>|:l:u:l:l7f‘!¢‘ °
i a_a-aAaAA -
0.01 T
1 10 100 1000 10000 100000

Number of objects

» Fan searcmh lkm x 1km, r=50, theta: [40"..50]

1200

C Curve multi mtervals
1000
800
CPU TIME 600
= Pruning
400 B Query
200 = MBR
0 M%wll
'\‘lzb“b,\b"l,b‘%ﬁ)b&b‘pb‘l,b(%%bﬂ,
VOV PTG S
1200 A
3 Z-CHIFM& of object
1000
800
CPU TIME 600
= Pruning
400 = Query
200 = MBR
O .

latency(ms)
o - N w £ (&) » ~

» Effect of Segmentation of Z-Curve

» Segmentation cause poor performance

» Candidate region + real query box region in each MBR,
» Decomposition causes the more candidate region and duplicated

comparison & region check overhead

» In Z-curve we should query by an MBR which covers the fan

L=

)

\

Q—: —=o=0ne MBR

S | N

JN
N
A Y
N
N
N
N\

=li=segmentation

o

100 200 300 400

—~
&

angle (theta1) °

» Effect of B+tree node capacity

» It is known that a node size should be almost of the page size (4KBytes) so
normally 100 to 200

» The result indicates that Z-Curve has time complexity of logC in small number
of objects, best at 256

» Z-Curve’s DRU algorithm requires node interval resolve by tree traversal, As the n
1s smaller, the chance of tree traversal increases more

» C-Curve has almost constant, best at 400

4
3.5 \

3
) \.".\

2 x\..—..rﬂi
== C-Curve

== Z7-Curve
0.5 I %e—e

(0 3) <o 0~ —
—
o

1 10 100 1000

B+tree node capacity

latency(ms)

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

» Effect of Angle direction

» Almost same 1n C-Curve

» /-curve

»not homogeneous query gQyerheads

o

\
\
VH\(A\

A
/
't

0

100

200
angle (theta1) °

300

400

=0—C-Curve
== 7-Curve

suucess ration(%)

90
80
70
60
50
40
30
20
10

0

//‘\/\ _//\\

/A\ I\

=0 C-Curve

Y Y Y VY

== 7-Curve

0

100 200 300 400
angle (theta1) °

latency (ms)

2.5

—
()]

—_

0.5

» Effect of Origin of the Fan

candidates regions

<50,20>
<60,80>

yifiN

!

L"vﬂ'uﬂ'_

N 00rr0 Ay teenoponnd ertoron, Sute Sog,

0 10 20

40 50

fan point number

60

== C-Curve
=—7-Curve

» Does Z-curve has homogeneous query overhead in the space?
» Answer : No! discontinuous points in space filling curves causes

» Effect of Fan angle width

» [inear increase

3500000

3000000

2500000

2000000

latency(ns)

1500000

1000000

500000

0

0 50 100 150 200 250 300 350

angle(A theta) °

400

=0 C-Curve
== Z7-curve

Conclusions & Further works

Conclusions

» SIMC are designed and implemented to be
scalable to the number of data by tuple indexing,
fan search with SFC.

» Fan Search with C-Curve provides better latency
in large density of nodes than Z-Curve

Further works

» Network and System architectures should be
tailored to be scalable in Massive Ubiquitous
Environments

