
Scalable Interactive Middleware Components p
for Ubiquitous Fashionable Computers

Gyudong Shim Kyu Ho ParkGyudong Shim, Kyu-Ho Park
presented by Gyudong Shim

gdshim@core.kaist.ac.krg @
2009.4.28

CContents
I t d tiIntroduction

U-interactive system for Ubiquitous Fashionable
ComputersComputers

Motivation of scalability issues
Scalable Interactive Middleware ComponentsScalable Interactive Middleware Components

Tuple indexing and query methods
Fan searchFan search

Target selection with angle and distance by space filling
curves

f l iPerformance Evaluation
Conclusions

UFCUFC
UFC(Ubiquitous Fashionable Computer)

iThiThrow

Display(touch screen)

iThiThrow
iThiThrow

Intuitive gesture based interface for ubiquitous services
Control TV, DVD players
Uploading UCC after editing pictures

iPowerPoint presenter

iThrow command sets

U i i S A hiU-interactive System Architecture
U i i iddlU-interactive middleware

Location based interaction with surrounding services by
iThrow interfaceiThrow interface
Handles user commands, data transfers, location services

CM VS U UC VC iTC iT UC
ontext

M
anager(locati

V
irtual M

ap
erver

U
biSpace Serve

U
PnP D

evice
C

ontrol M
anage

V
irtual M

ap
C

lient

Throw

C
ontroller

Throw
 G

U

U
biSpace C

li

Location Query

Map Feedback

Room Server: Virtual map repository
TVM
KUSP

on)

er er

TVM
KUSP

U
I ientMap Feedback

Room Server: Virtual map repository

UFC user iThrow GUIUFC user

Administrator
Virtual Map Editor Interactive objects

U-interactive U-interactive

E l f U i i iExample of U-interactive operation
P i t Fil S iPrint a File Scenarios

Virtual Map Repository

GUID manager

Map images
U interactive client1. update location

Map
UFC1

Target
Selector

UWB Tag
Zigbee Tag

Interactive objects
directory

U-interactive client 1. update location

UFC1

Map
UFC1

Map
UFC2

Map
UFC3

2. 1) point the target
2) select the target by fan search

Persistent storage
DB, File 3. throwing the picture

UbiSpace
publish to printer

Printer

1. update location

2. register subscription

UbiSUbiSpace
UbiSUbiSpace

Tuple space based coordination middleware
Java object and File sharing
String key based publish/subscribe systemString key based publish/subscribe system

Actual

1

Formal

UbiSpace

<“ithrow_data_2”, cam.jpg>
1

4
<“ithrow_data_2”, * > <“ithrow_data_3”, * >

<“ithrow_data_4”, * >publish

2
3

subscribe

M i i f SIMCMotivation of SIMC
S l bilit f U i t ti f i t tScalability of U-interactive for massive target
environments

Museums public stations with crowd usersMuseums, public stations with crowd users
More than thousands users and service objects
Frequent location updates and queriesFrequent location updates and queries
A lot of control messages and files over active spaces

Efficient data indexing and query processing forEfficient data indexing and query processing for
Our System

Tuple indexing in UbiSpacep g p
Fan search by space filling curves with query
optimization

1 T l I d i S h1. Tuple Indexing Scheme
T l t hi ttTuple matching pattern

Read the newest version of “KEY” in
the tuple space - LIFO
Subscribe “KEY” from the tuple
space

Problem of T-Space[1]
<cmd, t0>

Problem of T Space[1]
Support FIFO ordering
Index tuples by template tuple through
man al config ration

<cmd, t1>

<cmd, t2>

Repeated
scanning for
every tuple
matching for manual configuration

Exhaustive tuple scanning operation
Tuple indexing for interactive spaces

<cmd, t3>

<cmd t4>

the newest
version

p g p
Indexing by <name, time(reverse
order)>

<cmd, t4>

Tuple indexing by FIFO

[1] Hitting the distributed computing sweet spot with TSpaces. In: Computing Networks, pp. 457–
472 (2001)

1 T l I d i S h1. Tuple Indexing Scheme
T l i d d b <t l t l id> it kTuples are indexed by <tuple name, tuple id> composite keys
for tuple matching

Tuple id is the serial number of tuple creationp p
The same name of tuples are indexed by tuple id by descending
order
No repeated scanning overhead in tuple matchingNo repeated scanning overhead in tuple matching

Tuple Name Tuple ID Tuple

Parent PointerIcommand 12
Icommand 11
Icommand 10
Ticket 4
Ticket 2
zoo 1 B+-Tree with composite keyzoo 1

Tuple container<name, id>

p y

2 F S h2. Fan Search
Fan searchFan search

Pointing direction θP
All d θAllowed range θA
Select a target which is the closest to the θP within
[θ θ θ + θ] d di t ithi[θP – θA .. θP + θA] and distance within r

Pointing direction

OB

OC

OC in the fan(r θW)
r θ1

θ2

OB

OA

OC in the fan(r, θW)
is selected

θW

OD
User

2. Fan Search with Space Filling Curves

Efficient object indexing for location based
queries q

Exploit space filling curves for frequent location
update and region queriesupdate and region queries
Query Optimization

Q i d iti f filliQuery region decomposition for space filling curves
Caching path stack for repeated tree-traversals
Q i t l ki b l f d d tQuery interval skip by leaf node data

Space Filling CurvesSpace Filling Curves
Z-Curve

1st iteration 4th iteration2nd iteration
C-Curve

* Figures from JASS 2005 Saint Petersburg

R l d W k R d E [2]Related Work : Round Eye[2]
N t S d S hNearest Surrounder Search

A set of nearest surroundings at given position
Application: Robot soccerApplication: Robot soccer
Query indexing for efficient tracking
R-Tree based Query, Object indexingy j g

[2] Round-Eye: A system for tracking nearest surrounders in moving object environments. Elsevier
Information Systems 80(12), 2063–2076 (2007)

2 1 Q D i i2.1 Query Decompositions
Motivation

Reduce false hits by single MBR for spatial y g p
queries such as line, curves, and fan
Selection of Space filling curvesSelection of Space filling curves

Z-Curve(DRU) performance degradation by
decomposition query region

duplicated outside query region checks

C-Curve with multi interval query Que
regg

Road planning: lookup any
buildings which intersect the
new road

2 1 I l R Q i2.1 Integral Range Queries
One MBR query vs sum of MBRs queries

Query region approximation by one MBR isQuery region approximation by one MBR is
inefficient by FALSE HIT

Query
region

Query
region regionregion

2 1 I l R Q i2.1 Integral Range Queries
1 MBR C l l ti1. MBRs Calculation

For each xi intervals from xmin to xmax of query
regionregion
calculate ymin, ymax value for [xi..xi+1) → Rxi

2. Range Query for multiple intervals
BPTree rangeQuery([R R])BPTree.rangeQuery([Rx0 ..Rxk])

3 Pruning candidate results3. Pruning candidate results
Check the object is inside the query region

2 2 L fN d j2.2 LeafNode jumps
If an entry of leaf node exceeds the current
range, g ,

Skip MBRs which are behind the entry
MBRs are skipped by leaf

4 _ _ _

pp y
node data

2 _ _ _ 6 8 _ _

0 1 _ _ 2 3 _ _ 4 5 _ _ 6 7 _ _ 8 9 _ _

Performance Evaluation – TuplePerformance Evaluation Tuple
indexing

UbiSpace Tuple indexing effect
UbiSpace exploit the indexing effect p p g
Bounded matching time to the number of tuples

14 4

10

12

14

L
a
t
e 2 5

3

3.5

4

L
a
t
e

4

6

8
e
n
c
y

(

m

ubispace

T-Space

1

1.5

2

2.5e
n
c
y

(

m

ubispace

T-Space

0

2

0 2000 4000 6000 8000 10000 12000

m
s)

0

0.5

0 2000 4000 6000 8000 10000 12000

m
s)

Number of TuplesNumber of tuples Number of Tuples

Average latency of read operations Average latency of write operation

Performance EvaluationPerformance Evaluation
Fan Search Latency

Eff t f V i filliEffect of Various space filling curves
In low density, Z-Curve outperforms
In high density, C-Curve outperforms due to less false hit on tree g y, p
traverse
Path stack cache and leaf node jumps improves up to 5% latency

10

 C-Curve
 C-Curve with multi-interval
 Z-Curve

1

Latency
(ms)

0.1

1 10 100 1000 10000 100000
0.01

Number of objects

Performance EvaluationPerformance Evaluation
Effect of Space Filling Curves

Fan search 1km x 1km r=50 theta: [40˚ 50˚]Fan search 1km x 1km, r 50, theta: [40 ..50]

800

1000

1200

us C-Curve multi intervals

400

600

800

CPU TIME
Pruning

Query

MBR

0

200 MBR

number of object

800

1000

1200

us Z-Curve

400

600

800

CPU TIME
Pruning

Query

MBR

0

200 MBR

ff f i d i iEffect of Query region decomposition
Eff t f S t ti f Z CEffect of Segmentation of Z-Curve

Segmentation cause poor performance
Candidate region + real query box region in each MBR, g q y g ,
Decomposition causes the more candidate region and duplicated
comparison & region check overhead
In Z-curve we should query by an MBR which covers the fanIn Z-curve we should query by an MBR which covers the fan

4

5

6

7

m
s)

1

2

3

4

la
te

nc
y(

m

one MBR

segmentation

0
0 100 200 300 400

angle (theta1) °

P f E l iPerformance Evaluation
Effect of B+tree node capacity

It is known that a node size should be almost of the page size (4KBytes) so
ll 100 t 200normally 100 to 200

The result indicates that Z-Curve has time complexity of logC in small number
of objects, best at 256

Z-Curve’s DRU algorithm requires node interval resolve by tree traversal, As the n
is smaller, the chance of tree traversal increases more

C-Curve has almost constant, best at 400

2.5

3

3.5

4
l
a
t
e

0 5

1

1.5

2
n
c
y

(

m

C-Curve

Z-Curve

0

0.5

1 10 100 1000

s)

B+tree node capacity

P f E l iPerformance Evaluation
Effect of Angle direction

Almost same in C-Curve
Z-curve

not homogeneous query overheads

60
70
80
90

100

on
(%

)

not homogeneous query overheads

1.4
1.6
1.8

2

s)

20
30
40
50
60

su
uc

es
s

ra
tio

C-Curve

Z-Curve

0 4
0.6
0.8

1
1.2

la
te

nc
y(

m
s

C-Curve

Z-Curve

0
10

0

0 100 200 300 400

angle (theta1) °

0
0.2
0.4

0 100 200 300 400

angle (theta1) ° g ()angle (theta1)

P f E l iPerformance Evaluation
Eff t f O i i f th FEffect of Origin of the Fan

Does Z-curve has homogeneous query overhead in the space?
Answer : No! discontinuous points in space filling curves causes p p g
candidates regions

<50 20>

2.5

<50,20>

<60,80>

1.5

2

m
s)

1la
te

nc
y

(m

C-Curve

Z-Curve

0

0.5

0 10 20 30 40 50 60

fan point number

P f E l iPerformance Evaluation
Effect of Fan angle width

Linear increase

3000000

3500000

2000000

2500000

cy
(n

s)

1000000

1500000la
te

nc C-Curve

Z-curve

0

500000

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 400

angle(Δ theta) °

C l i & F h kConclusions & Further works
l iConclusions

SIMC are designed and implemented to be
scalable to the number of data by tuple indexing,
fan search with SFC.
Fan Search with C-Curve provides better latency
in large density of nodes than Z-Curve

Further works
Network and System architectures should be y
tailored to be scalable in Massive Ubiquitous
Environments

