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1Throw

IThrow

» Intuitive gesture based interface for ubiquitous services
Control TV, DVD players
Uploading UCC after editing pictures

PowerPoint presenter
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» U-interactive middleware

» Location based interaction with surrounding services by
IThrow interface

» Handles user commands, data transfers, location services
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» Print a File Scenarios
Virtual Map Repository

Map images

Interactive objects
dlrectory
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1. update location

Printer M ¢-------- > UbiSpace
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UFC!

2. 1) point the target R
2) select the target by fan search

3. throwing the picture
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UbiSpace
UbiSpace

» Tuple space based coordination middleware
» Java object and File sharing

» String key based publish/subscribe system
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Motivation of SIMC

Scalability of U-interactive for massive target
environments

» Museums, public stations with crowd users

» More than thousands users and service objects

» Frequent location updates and queries

» A lot of control messages and files over active spaces

Efficient data indexing and query processing for
Our System
» Tuple indexing in UbiSpace
» Fan search by space filling curves with query
optimization



1. Tuple Indexing Scheme

Tuple matching pattern

» Read the newest version of “KEY” 1n
the tuple space - LIFO

» Subscribe “KEY” from the tuple

space

Problem of T-Space[1]
» Support FIFO ordering e for
» Index tuples by template tuple through emvaet"cyh}:g'for

the newest
version

manual configuration
» Exhaustive tuple scanning operation
Tuple indexing for interactive spaces

» Indexing by <name, time(reverse
order)>

i

Tuple indexing by FIFO

[1] Hitting the distributed computing sweet spot with TSpaces. In: Computing Networks, pp. 457—
472 (2001)



I Tuple [lndoxine schenic

Tuples are indexed by <tuple name, tuple 1d> composite keys

for tuple matching

» Tuple 1d is the serial number of tuple creation

» The same name of tuples are indexed by tuple 1d by descending
order

» No repeated scanning overhead in tuple matching

Tuple Name Tuple ID | Tuple
Icommand 12

Icommand 1

Icommand 10

Ticket 4

Ticket 2

Zoo 1

Tuple container<name, id>
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2. Fan Search

Fan search
» Pointing direction 0,
» Allowed range 0,
> Select a target which 1s the closest to the 0, within
[0p—0,..0, +0,] and distance within r

4 Pointing direction

1 O¢ in the fan(r, 8,y )
Is selected

Op




2. Fan Search with Space Filling Curvey

Efficient object indexing for location based
queries

» Exploit space filling curves for frequent location
update and region queries

» Query Optimization
Query region decomposition for space filling curves
Caching path stack for repeated tree-traversals

Query 1nterval skip by leaf node data
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Related Work : Round Eyel[2]

Nearest Surrounder Search
» A set of nearest surroundings at given position
» Application: Robot soccer
» Query indexing for efficient tracking
» R-Tree based Query, Object indexing
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[2] Round-Eye: A system for tracking nearest surrounders in moving object environments. Elsevier .
Information Systems 80(12), 2063—2076 (2007)



2.1 Query Decompositions

Motivation

» Reduce false hits by single MBR for spatial
queries such as line, curves, and fan

» Selection of Space filling curves
Z-Curve(DRU) performance degradation by

decomposition query region
duplicated outside query region checks

Qui

C-Curve with multi interval query reg

Road planning: lookup any

buildings which intersect the
new rnad



» Query region approximation by one M|
inefficient by FALSE HIT

T~

Query
region

» One MBR query vs sum of MBRs queries
BR 1s
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Query
region



2.1 Integral Range Queries

MBRs Calculation
» For each x; intervals from x . to x_.. of query
region
calculate y .., y..., value for [X...X;,;) — R,
Range Query for multiple intervals | -5 | |
» BPTree.rangeQuery([R,,..R, ]) HE Lt T
N Y ol
Pruning candidate results —

» Check the object 1s inside the query region



» If an entry of leaf node exceeds the current
range,
» Skip M

.

3Rs which are behind the entry

-~ MBRs are skipped by leaf

node data
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» UbiSpace Tuple indexing effect

» UbiSpace exploit the indexing effect

» Bounded matching time to the number of tuples
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Performance Evaluation
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Fan Search Latency

Effect of Various space filling curves
» In low density, Z-Curve outperforms

» In high density, C-Curve outperforms due to less false hit on tree
traverse

» Path stack cache and leaf node jumps improves up to 5% latency
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» Fan searcmh lkm x 1km, r=50, theta: [40"..50]
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» Effect of Segmentation of Z-Curve

» Segmentation cause poor performance

» Candidate region + real query box region in each MBR,
» Decomposition causes the more candidate region and duplicated

comparison & region check overhead

» In Z-curve we should query by an MBR which covers the fan
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» Effect of B+tree node capacity

» It is known that a node size should be almost of the page size ( 4KBytes ) so
normally 100 to 200

» The result indicates that Z-Curve has time complexity of logC in small number
of objects, best at 256

» Z-Curve’s DRU algorithm requires node interval resolve by tree traversal, As the n
1s smaller, the chance of tree traversal increases more

» C-Curve has almost constant, best at 400

4
3.5 \

3
) \.".\

2 x\..—..rﬂi
== C-Curve

== Z7-Curve
0.5 I %e—e

(0 3) <o 0~ —
—
o

1 10 100 1000

B+tree node capacity



latency(ms)
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» Effect of Angle direction

» Almost same 1n C-Curve

» /-curve

»not homogeneous query gQyerheads
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» Effect of Origin of the Fan

candidates regions
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» Does Z-curve has homogeneous query overhead in the space?
» Answer : No! discontinuous points in space filling curves causes




» Effect of Fan angle width

» [ inear increase
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Conclusions & Further works

Conclusions

» SIMC are designed and implemented to be
scalable to the number of data by tuple indexing,
fan search with SFC.

» Fan Search with C-Curve provides better latency
in large density of nodes than Z-Curve

Further works

» Network and System architectures should be
tailored to be scalable in Massive Ubiquitous
Environments



