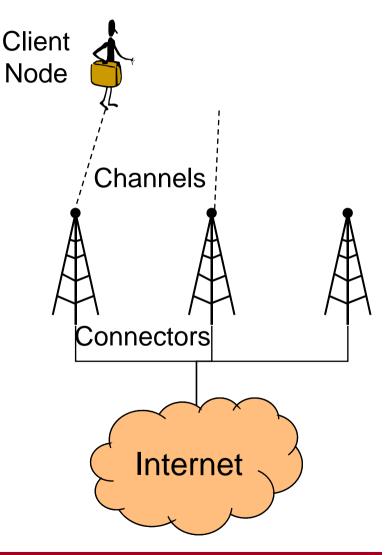
Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity Based on Bluetooth

DEIS, Università degli Studi di Bologna, Viale Risorgimento, 2 - 40136 Bologna Italy carlo.giannelli@unibo.it

Agenda

- From traditional homogeneous to novel heterogeneous wireless scenarios
 - several communication technologies
 - infrastructure and **peer** points of access
- Multi-hop Multi-path Heterogeneous Connectivity (MMHC) middleware for context-aware dynamic connectivity in heterogeneous environments
 - context information related to path reliability and throughput
 - manage interface, platform, driver heterogeneity
 - **efficiency required** to gather context information, evaluate connectivity opportunities, and perform connections



The Wireless Scenario

- Client node: node requiring connectivity, e.g., user PDA
- Connectors: nodes providing connectivity, e.g., UMTS base station
- Channel: active client-connector IP connection, e.g., Bluetooth pairing and DHCP configuration

Handover procedure

- a client node changes current connector while moving
- Evaluation process
 - context gathering: which information is important?
 - **metric application**: which is the most suitable connector?

Carlo Giannelli

Homogeneous Wireless Scenario

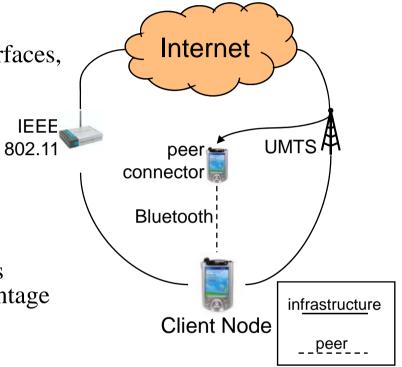
- One communication interface at a time
 - the client node does not change wireless interface

Horizontal handover

- infrastructure connectors only
- origin and destination connectors based on the same wireless technology

■ IEEE 802.11

- connectors are IEEE 802.11 Access Points (APs)
- metric based on Received Signal Strength Indication (RSSI) and Signal to Noise Ratio (SNR), usually embedded in interface firmware


Heterogeneous Wireless Scenario

Heterogeneous interfaces

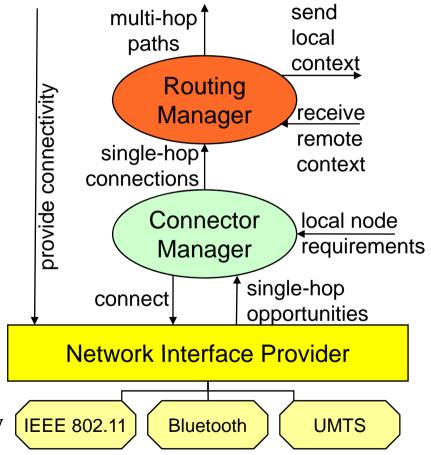
 the client node exploits multiple wireless interfaces, even simultaneously

Heterogeneous connectors

- **infrastructure** or **peer** nodes
- fixed or **mobile** peers
- single-/multi-hop paths
- Connectivity management
 - managing interfaces/connectors/channels/paths considering several context data to take advantage of the many networking opportunities

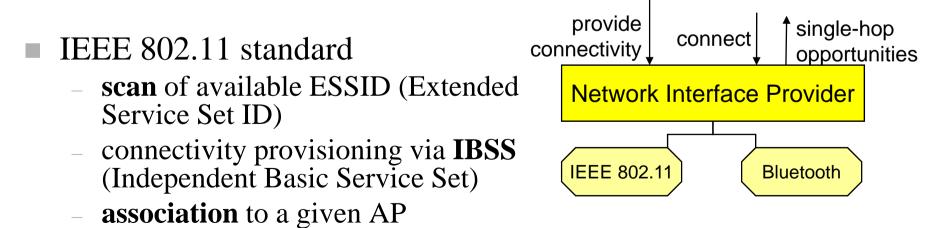
Wireless heterogeneity increases client node capabilities:

- heterogeneous connectors enable the **most suitable** form of connectivity
 - Bluetooth to limit power consumption, IEEE 802.11 to get larger bandwidth
- peer connectors **extend connectivity** opportunities via multi-hop **paths**
 - UMTS link accessed via Bluetooth through a peer connector

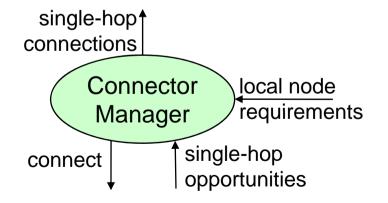

MMHC: <u>Multi-hop Multi-path</u> <u>Heterogeneous Connectivity</u>

- Novel metric considering a wide set of information at different abstraction levels
 - traditional RSSI/SNR based evaluation processes are not enough
- Evaluation metric specifically designed for heterogeneous wireless scenarios
 - client node and peer mobility (based on RSSI) to provide reliability
 - wireless technology and path characteristics, e.g., bandwidth and number of clients at each hop, to provide sufficient throughput
 - residual battery level to ensure path long-term durability

MMHC Architecture

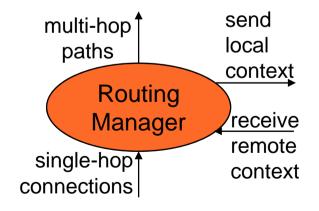

- Network Interface Provider
 - homogeneous access to
 heterogeneous interfaces on
 different operating systems
- Connector Manager
 - single-hop connections based on node mobility
- Routing Manager
 - context information remote distribution
 - multi-hop paths based on estimated connectivity availability (and throughput

Network Interface Provider


- Network Interface Provider (NIP) provides a homogeneous access to heterogeneous interfaces
- **Features**: set of capabilities common to interfaces
 - **get available connectors**, to get available connectors list and related information such as RSSI
 - perform as peer connector, to offer connectivity in a peer-to-peer fashion
 - **connect to a connector**, to perform a connection with a given connector

Connector Manager

- Connector Manager (CM) establishes single-hop channels with remote devices
 - 1) connectors discovery via any interface
 - 2) connectors evaluation based on mobility degree
 - 3) requires **layer2 connections** with most suitable connector of each interface
 - 4) activates layer3 configuration via **DHCP client**
- CM does not interact with remote nodes
 - mobility degree achieved **locally** in a lightweight manner
 - requirements in terms of maximum node-connector mutual mobility



Routing Manager

Routing Manager (RM) handles multi-hop paths

- 1) **context information exchange** with one-hop distant nodes
- 2) single-hop distant **links evaluation**
- 3) **routing rule modification** to provide suitable multi-hop paths
- RM has a wider perspective
 - mobility, throughput and energy of paths
 - discard unreliable paths due to mobility, then achieve a trade-off among throughput and energy

Performance Considerations (1)

- Operating system and wireless interface
 independent tasks
 - little impact on achieved performance
 - e.g., CM spends about 120ms for the dynamic evaluation of 5 connectors
- Operating system dependent tasks
 - different implementations on different platforms
 - e.g., RM performs multi-hop path creation via
 iptables on Linux and route on MS Windows

Performance Considerations (2)

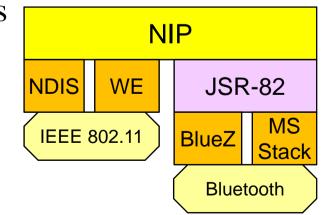
Wireless interface dependent tasks

- different implementations on different platforms and different drivers
 - IEEE 802.11: Wireless Extensions on Linux, NDIS drivers on Windows XP/Vista
 - Bluetooth: BlueZ on Linux, Widcomm, BlueSoleil and Microsoft Bluetooth Stack on Windows XP/Vista
- great impact on performance
 - IEEE 802.11 AP scan and association last about 1-3s, in relation to underlying devices
 - Bluetooth inquiry procedure and pairing last more than 12s

MMHC Scenarios and Bluetooth

- Bluetooth usually exploited only to connect remote devices, e.g., wireless keyboard/mouse
 - manual connection via platform specific user interfaces
 - relatively long pairing procedure
 - limited coverage range
- Bluetooth suitable also for connectivity provisioning
 - much **lower power consumption** than IEEE 802.11
 - 1-35 mA instead of 100-350 mA
 - **sufficient bandwidth** for many applications
 - 0.7 Mbps for Bluetooth 1.2, 3 Mbps for Bluetooth 2.0 EDR

NIP and Bluetooth


- NIP implementation for Bluetooth
 - get available connectors, inquiry procedure to discover Bluetooth devices
 - perform as peer connector, PAN (Personal Area Network)
 provisioning and DHCP server instantiation
 - connect to a connector, **PAN** connection and **DHCP client**
- Bluetooth-specific issues:
 - manage driver **heterogeneity**
 - increase inquiry efficiency
- JSR-82 exploitation to provide a platform independent efficient implementation of NIP features for Bluetooth devices

JSR-82: Java APIs for Bluetooth

Pros

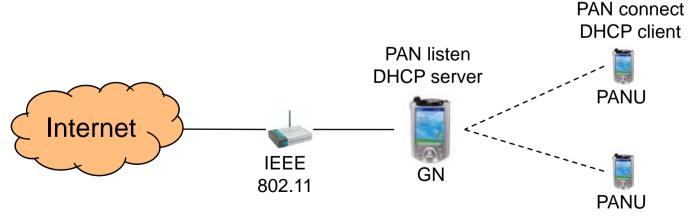
- **multi-platform** standard
- applications can reduce the inquiry period
- Cons
 - do **not provide RSSI** values, required to evaluate connectors mobility
 - do not support BNEP (Bluetooth Networking Encapsulation Protocol), required to easily provide IP-based PAN connectivity
- Note: NIP and JSR-82 act at different layers
 - NIP provides homogeneous access to heterogeneous interfaces, e.g., IEEE 802.11 and Bluetooth
 - JSR-82 provides homogeneous access to heterogeneous drivers for Bluetooth, e.g., BlueZ and MS Bluetooth Stack

Adaptable Inquiry Procedure

- JSR-82 DiscoveryAgent class: startInquiry and cancelInquiry methods
 - full inquiry procedure of 10.24s discovers 100% devices
 - halved inquiry procedure of 5.12s discovers 99% devices
 [Peterson et al.]
- Connector Manager (CM) modifies inquiry procedure length in relation to the current context
 - short inquiry at system startup and at connectivity disruption
 - full inquiry otherwise

JSR-82 Extension for RSSI Gathering

- Bluetooth provides RSSI only of connected devices
 - 1) inquiry procedure to discover devices
 - 2) baseband connection
 - 3) RSSI gathering
- Linux BlueZ
 - hcitool -i hciX **cc** remote_addr
 - hcitool –i hciX **rssi** remote_addr
- Windows Widcomm
 - BOND_RETURN_CODE Bond(BD_ADDR bda, BT_CHAR *pin_code)
 - BOOL GetConnectionStats(BD_ADDR bda, tBT_CONN_STATS *p_conn_stats)


JSR-82 Extension for Connectivity Provisioning (1)

- additional BNEPConnector class: server() method
 - setup a Group Ad-hoc Network (GN) PAN: a device behaves as gateway, the others as clients
 - instantiate a DHCP server: the node acts as gateway
- Linux BlueZ
 - pand -i hciX --listen --role GN --devup ./devup.sh --master
 - devup.sh instantiates the **DHCP server** at connection establishment, as soon as bnepX interface is available
- Windows Widcomm
 - no PAN setup, no DHCP server command (available on MS Windows Server 2008)

JSR-82 Extension for Connectivity Provisioning (2)

- 1) NIP exploits BNEPConnector.client(remote_addr) to connect to a GN PAN as PANU (PAN User)
 - Linux BlueZ: pand -i hciX --connect remote_addr
 --role PANU --service GN
 - Windows Widcomm: CreateConnection(remote_addr, SERVCLASS_GN)
- 2) Then NIP activates a DHCP client
 - Linux: dhclient on bnepX interface
 - Windows: ipconfig /renew *

Carlo Giannelli

Conclusions & Ongoing Work

- MMHC supports multi-hop multi-path spontaneous connectivity exploiting off-the-shelf heterogeneous equipment
 - IEEE 802.11, Bluetooth, Ethernet
- Bluetooth effective exploitation via
 - efficient inquiry procedure to discover devices
 - homogeneous access to heterogeneous drivers
- JSR-82 enhancement to
 - gather RSSI, required to estimate node mobility
 - **provide BNEP** connections, to easily support IP connectivity
- Ongoing work
 - additional efforts to fully support MS Windows drivers
 - QoS issues: multi-hop connectivity starvation avoidance via dynamic and context-aware bandwidth reservation
 - security issues: peer mutual authentication, user incentives, dynamic level of trust management

Berlin, Germany — 29.4.2009

Carlo Giannelli

Any question?

- Prototype code and implementation insights:
 - http://lia.deis.unibo.it/research/MAC/
 - http://lia.deis.unibo.it/research/MACHINE/
 - <u>http://lia.deis.unibo.it/research/MMHC/</u>
 - http://lia.deis.unibo.it/Staff/CarloGiannelli/